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Background (1/2)

Goal

Rapid and accurate characterization 
of illicit special nuclear material 
(SNM) using neutron inter-arrival 
times measured by a passive 
neutron multiplicity counter.

Measurement

Time of arrival of neutron counts 
(from which inter-arrival times are 
calculated) 

Neutrons from the correlated source (blue) 
arrive in short bursts. Neutrons from the 
random Poisson source (red) arrive in a 
steady stream.

Burst

Gap
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Background(2/2)Background(2/2)

Bimodal Time Interval PDF

Time Interval PDF as a Unique Signature of SNM

Theory provides an exact formula for the PDF 
of neutron inter-arrival times parametrized by 
fissile source mass, detection efficiency, 
system multiplication factor, neutron lifetime 
against detection.

This PDF, which is conditioned on a set of 
fissile source parameters, completely and 
uniquely characterizes the fissile source 
(quantity, and arrangement of the SNM)

Defining characteristics of SNM

• Presence of neutrons – each fission creates on average 2-3 neutrons and 
neutrons arrive in short bursts followed by gaps

• Ability to sustain a fission chain, a series of fissions where each successive 
fission is induced by a neutron from a previous fission chain



Lawrence Livermore National Laboratory LLNL-PRES-670603

4

Parameter Estimation Problem

Problem Statement: 

Given neutron inter-arrival times and the analytic PDF characterized by 
parameters of interest, estimate the parameters of the non-Gaussian, 
multimodal PDF as neutrons arrive.

Static and Independent Model Parameters

The parameters (source mass, detection efficiency, system multiplication 
factor, neutron lifetime against detection) are constants, uncorrelated and 
there is no drift or abrupt changes in model parameters over time.

Online or sequential estimation

Compute estimates of model parameters on-the-fly by continuously 
updating the posterior pdfs (hence Bayesian) of parameters as more 
observations become available in real time.

online algorithms are often more efficient — converge faster towards the 
target parameter values and need fewer computer resources.
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Physics Model of a Fissile Source 1/2

R
1

is the count rate

F
S

is the fission rate

r
0

probability that no additional neutrons from the same fission chain 

are counted within a time �

b
0  

is the probability that no neutrons are detected within the time 

interval �

n
0

is the probability of no additional neutron  counts in time interval �

�	 inter-arrival time or time interval

����� is the probability of detecting n neutrons from a fission chain
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Physics Model of a Fissile Source 2/2

Embedded in the above equation is a set of various relations that capture 

the time-interval probability: 

is the half-life

m
S

mass of the source

� is the inverse diffusion time scale

p is the probability that a neutron induces a fission

q is the escape probability (q = 1- p)

�̅� is the average neutron count from a spontaneous fission

�̅� 	is the average neutron count from an induced fission 

A is the atomic number, N
A

is the Avogadro Number 

� is the system multiplicity and 

� detection efficiency  and 
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Sequential Bayesian Parameter Estimation (1/2)

Batch version: Estimate the posterior distribution Pr[Θ |T
m
] of source 

parameters Θ given the entire inter-arrival data set T
m 

up to time instant m.

From Bayes' theorem we have 

Sequential Version: The posterior distribution is given by

Assume inter-arrivals are Markovian, that is,

Now the equation for sequentially propagating the posterior is

and
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Sequential Bayesian Parameter Estimation (2/2)

Parameter vector Θ is a random constant with no associated dynamics 0..

How then do you transition from 

Try

Until

where

Constrained Random Walk

α is the annealing parameter and typically 0.9  ≤ α ≤ 0.99

Set a non-informative prior on Θ using the known bounds on the parameters 

and
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Sequential Bayesian Parameter Estimation aka Particle 
Filter

What is Importance Sampling?

• Represent the PDF as a set of random samples (n)

• Approach an exact PDF as n → ∞

• Obtain mean, covariance of the state vector PDF from the 
samples. 

• Get a functional estimate of the PDF 

How do we go from prior to posterior?

• Update  a sample from the prior to a sample from the 
posterior through the medium of likelihood function (Bayes’ 
theorem in samples form)

Why do we need to resample?

• Degeneracy phenomenon – particles collapse,

• all but one particle will have negligible weight

• Resample - eliminate particles that have small weights and 
generate a new set by resampling (with replacement) N times
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Bootstrap Particle Filter 
(with Constrained Random Walk and Residual Resampling)

Prior

Prediction

Try

Until

where

Update

Normalize

Weights

Resample

Posterior PDF 



Lawrence Livermore National Laboratory LLNL-PRES-670603

11

Notional HEU 
Example (1/2)

Converges to the correct 
answers in ≈ 300 neutrons

• True mass = 25 kg

• Converged mass = 30 ± 9 kg

• True keff = 0.9

• Converged keff = .891 ± 0.026

• True diffusion time = 100 µs

• Measured = 91 ± 26 µs

3% Detection efficiency

No need for a priori knowledge 
of detection efficiency
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Notional HEU Example (1/2) – Convergence Results 

(click on the figure to start  movie)
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HEU in Steel 
(MCNP Model)

High Multiplication

Converges to the correct 
answers in ≈ 400 neutrons

• True mass = 1.837 kg

• Converged mass = 3 ± 6 kg

• True keff = 0.9512

• Converged keff = .932 ± 0.016

• Diffusion time = 37 ± 10 µs

1.5% Detection efficiency

No need for a priori knowledge 
of detection efficiency

Diffusion Time = 37 µs
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HEU Shell in Poly 
(MCNP Model)

Low Multiplication

Converges to the correct 
answers in ≈400 neutrons

• True mass = 0.3962 kg

• Converged mass = 1.5 ± 0.5 kg

• True keff = 0.5331

• Converged keff = 0.59 ± 0.08

• Diffusion time = 71 ± 29 µs

2.5% Detection efficiency

No need for a priori knowledge 
of detection efficiency

Diffusion Time = 71 µs
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Convergence, Accuracy, and Local Maxima

Theory guarantees convergence of the empirical 
distributions generated by particle filters toward the true 
distributions as the number of particles (N)→∞.

Computational burden increases as N increases. Using 
smaller N leads to bias in the estimate of the posterior 
mean as PF can get trapped in local maxima. One way 
to combat bias would be to iteratively narrow the 4D 
parameter search space while increasing N, the number 
of particles used.

To obtain uncertainties on the estimated parameters, 
start simultaneously multiple PF runs with random 
starting points and take the standard deviation of the 
converged results.
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Summary

The problem of estimating the parameters of a fission 
process is stochastic since each neutron arrival, as it is 
transported through its path to the detector, is a  random 
draw from the underlying time-interval distribution.

It requires a sequential Bayesian approach to provide MAP 
estimates of the parameters at each time step.

We applied an analytical likelihood PDF (Snyderman and 
Prasad, 2012) to construct an MCMC particle filter capable of 
estimating the source parameters and their accompanying 
probability distributions.

We demonstrated that we could reliably estimate the 
parameters of a fission process using MCNP simulation data.
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Physics Model of a Fissile Source 3/3

The probability of creating n neutrons of the � emitted with probability 


� is given by 

The following probabilities complete the distribution




